[Maximum Marks: 50

AA-1184

(005) B.Sc. (Part-II) Term End Examination, 2021-22 Mathematics (Paper-I)

Time : 3 hrs.]

नोट — सभी पाँच प्रश्नों के उत्तर दीजिए । प्रश्नों के अंक उनके दाहिनी ओर अंकित हैं। Attempt all five questions. The figures in the right-hand margin indicate marks.

[इकाई-1 / Unit-I]

1. (क) सिद्ध कीजिए कि यदि |x| < 1 तब अनुक्रम $\{x^n\}_{n=1}^{\infty}$ अभिसारी है।

Show that if |x| < 1 then the sequence $\{x^n\}_{n=1}^{\infty}$ is convergent.

(ख) सिद्ध कीजिए कि $\lim_{x \to \infty} U_n = 0$ श्रेणी ΣU_n की अभिसारिता के लिये आवश्यक प्रतिबंध है परंतहु पर्याप्त नहीं है।

Show that, for the convergence of the series ΣU_n , it is necessary but not sufficient that $\lim_{x \to \infty} U_n = 0$

अथवा/OR

(क) श्रेणी $1 + \frac{2x}{2} + \frac{3^2 x^2}{3} + \frac{4^3 x^3}{4} + \dots x > 0$ के अभिसारी या अपसारी की परीक्षण कीजिए।

Test the convergence or divergence of the series 1+

$$+\frac{2x}{2}+\frac{3^{2}x^{2}}{3}+\frac{4^{3}x^{3}}{4}+\dots x>0$$

(ख) सिद्ध कीजिए कि प्रत्येक कौशी अनुक्रम परिबद्ध होता है। Show that every Cauchy sequence is bounded.

[इकाई-2 / Unit-II]

2. (क) मध्यवर्ती मान प्रमेय लिखिए तथा सिद्ध कीजिए। State and prove the intermediate value theorem.

 $(fog)'(x_0) = f'[g(x_0)] \cdot g'(x_0)$

(ख) यदि f और g क्रमशः $8(x_0)$ और x_0 पर अवकलनीय है तो सिद्ध कीजिए कि foy, x_0 पर अवकलनीय है तथा (fog)' $(x_0) = f'[g(x_0)] \cdot g'(x_0)$ If f and g are differentiable at $g(x_0)$ and x_0 respectively then show that fog is differentiable at x_0 and

अथवा/OR

- (क) सिद्ध कीजिए कि फलन जो परिबद्ध एवं बंद अंतराल [a, b] में संतत है, अंतराल [a, b] में एक समान सतत होता है। Show that a function which is continuous in bounded and closed interval [a, b] is uniformly continuous in [a, b]
- (ख) बिन्दुओं x = 0, 1 पर फलन f(x) = |x| + |x-1| के सातत्यता की जांच कीजिए। Test the continuity of the function f(x) = |x| + |x-1| at x = 0, 1

[इकाई-3 / Unit-III]

3. (क) $\varepsilon - \delta$ तकनीक से सिद्ध कीजिए कि : $\lim_{(x,y) \to (1,1)} x^2 + 2y = 3$

By using $\mathcal{E} - \delta$ technique prove that : $\lim_{(x,y)\to(1,1)} x^2 + 2y = 3$

5

5

5

AA-1184

(ख) यदि
$$\theta = t^n e^{-r^2/4t}$$
 तब n के किस मान के लिए $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$
If $\theta = t^n e^{-r^2/4t}$ then for what value of n : $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$

(क) समीकरण $\sin^2 z \frac{d^2 y}{dz^2} + \sin 4z \frac{dy}{dz} + 4y = 0$ को $\tan z = e^x$ प्रतिस्थापन द्वारा रूपांतरित कीजिए।

Transform the equation $\sin^2 z \frac{d^2 y}{dz^2} + \sin 4z \frac{dy}{dz} + 4y = 0$ by putting $\tan z = \exp(z)$.

(ख) सिद्ध कीजिए कि फलन u = 3x + 2y - z, v = x - 2y + z, w = x (x + 2y - z) स्वतंत्र नहीं है तथा उनके बीच संबंध ज्ञात कीजिए। Prove that the function u = 3x + 2y - z, v = x - 2y + z, w = x (x + 2y - z) are not independent and find a relation between them.

[इकाई-4 / Unit-IV]

4. (क) सरल रेखाओं $\frac{x}{a} + \frac{y}{b} = 1$ का अन्वलोप ज्ञात कीजिए जबकि $a^2 + b^2 = c^2$ जहाँ c नियतांक है।

Find the envelope of the straight lines $\frac{x}{a} + \frac{y}{b} = 1$ when $a^2 + b^2 = c^2$ and c is constant.

(ख) $U = x^2 + y^2 + z^2$ का उच्चिष्ठ और निम्ननिष्ठ ज्ञात कीजिए जबकि $ax^2 + by^2 + cz^2 = 1$ तथा lx + my + nz = 0Find the maxima and minima of $U = x^2 + y^2 + z^2$ subject to the conditions $ax^2 + by^2 + cz^2 = 1$ and lx + my + nz = 0

अथवा/OR

- (क) $U = x^2 + y^2 + z^2$ का उच्चिष्ठ और निम्नष्ठि ज्ञात कीजिए जबकि $ax + by + cz^2 = 1$ तथा a'x + b'y + c'z = 1Find the maxima and minima of $U = x^2 + y^2 + z^2$ subject to the conditions $ax + by + cz^2 = 1$, a'x + b'y + c'z = 1
- (ख) रेखाओं के परिवार ax sec α by cosec $\alpha = a^2 b^2$ का अन्वालोप ज्ञात कीजिए जहाँ α प्राचल है। Find the envelop of the family of lines ax sex α – by cosec $\alpha = a^2 - b^2$ where α is parameter.

[इकाई-5 / Unit-V]

5. (क) सिद्ध कीजिए : $\boxed{\frac{1}{2}} = \sqrt{\pi}$ Show that : $\boxed{\frac{1}{2}} = \sqrt{\pi}$

(ख) $\iint_{R} xy(x+y) dxdy$ का मूल्यांकन कीजिए जहाँ R, परवलय $y = x^2$ तथा रेखा y = x के बीच का क्षेत्र है। Evaluate $\iint_{R} xy(x+y) dxdy$ over the area between the parabola $y = x^2$ and the line y = x.

अथवा/OR

- (a) सिद्ध कीजिए कि $\boxed{\mathbf{m}} \boxed{\mathbf{m} + \frac{1}{2}} = \frac{\sqrt{\pi}}{2^{2m-1}} \boxed{2\mathbf{m}}$ जहाँ \mathbf{m} धनात्मक वास्तिवक संख्या है।
- Prove that : $\boxed{\mathbf{m}} \quad \boxed{\mathbf{m} + \frac{1}{2}} \frac{\sqrt{\pi}}{2^{2m-1}} \boxed{2m}$ where m is a positive real number.
- (ख) समाकल $\int_{\sqrt{29x-x^2}}^{2a} V dx dy$ के क्रम को परिवर्तित कीजिए।

Change the order of integration : $\int_{0}^{2a} \int_{\sqrt{29x-x^{2}}}^{\sqrt{2ax}} V dx dy$